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ABSTRACT !

T PO R 4

/
i

7 A , o

In sitﬁ;seismic methods are becoming*widely used as a means of
nondestructively evaluating the elastic properties of geotechnical systems. .

The crosshole and downhole seismic methods are most often used. -The elastic ;ﬁ
constants are calculated from the records of body waves (longitudinal and ‘ :;
transverse waves) traveling through the media. Measurements are made by "
generating a seismic disturbance at one point and measuring the time required 0y
for the disturbance to travel to one or more seismic receivers. Several ;:
simplifying assumptions are made in the traditional analysis of seismic %i:
measurements for engineering purposes. These dssumptionsd include assuming "'
plane wave propagation, measurement of only far-field waves, and independence ;i
of the measurements on the source-receiver configuration and on the amount of ;:'
material damping. An analytical study of the effects and the validity of the o
different assumptions is presented.. A review of existing techniques to 8
evaluate seismic data based on time domain analysis is performed, and new fﬁ
techniques based on correlation and spectral analyses are presented. ii‘
Emphasis is placed on determination of wave velocities and attenuation ‘§
parameters from which elastic properties and material damping can be
calculated. S
v',fi is found that, for the range of distances and frequencies typically B~ '
used in engineering applications, body wave fronts generated by point sources :“'
cannot be considered plane;and éﬂat)near-fie]d effects associated with ;
spherical wave fronts can be very important. The near-field effects are %ﬁ
caused by coupling between waves which exhibit the same particle motion but Eiz
which propagate at different velocities and attenuate at different rates. To ;¢
minimize the detrimental effects of near-field waves in those methods based )
on spectral analysis technigues, it is recommended that, in the field setup, Q\
the ratio of distances from the source to the second and first receivers be 3:
of the order of two or greater.,K For typical setups in which the distance ‘;{
from the source to the first receiver is equal to the distance between the ;
receivers, near-field effects can be neglected if measurements are made at igi
frequencies such that the distance from the source to the closest receiver is i:ﬂ
at least one wavelength. Additianal recommendations regarding body wave ' ﬁ;;
techniques are presented. :
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CHAPTER ONE

INTRODUCTION

1.1 SEISMIC METHODS IN CIVIL ENGINEERING

Steel, concrete, soil, rock, pavement and otrer engineering
materials behave like elastic bodies at small strains. For soil,
rock and pavement materials, small strains can be considered any
strains on the order of 0.00l percent or less. The smalli-strain
range in steel and concrete is considerably higher. Stresses
produced by a source releasing energy into the medium which creates
small strains will propagate away from the source as elastic waves.
The velocities at which these waves propagate depend mainly on the
elastic moduli of the materials that compose the medium.

Therefore, if one generates small-strain stress waves and measures
propagation velocities, elastic material properties can be
calculated. Such measurements are typically categorized as seismic
measurements.

It is the purpose of this study to understand more completely
seismic measurements as used for engineering applications. Most
applications of seismic methods, to date, have been by exploration
geophycisists, seismologists and petroleum engineers. The main
efforts of these groups have been directed toward determining
abrupt and broad geological changes in the interior of the earth,
generally at great depths within rock formations. Estimation of
the structure of the earth or location of the position of natural

resources was typically the goal of those measurements. This
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information was generally obtained by studying the arrivals of
waves (usually compression waves) that were reflected or refracted
at the interfaces of layers with very different elastic properties.

Engineers have also been interested in locating abrupt
structural changes in earth materials. In addition to
interpretation of the structural bedding surfaces, engineers have
been attempting to determine the physical properties and
stratigraphy of the uppermost zone of the earth. In certain cases
near the surface of the earth, conventional sampling techniques can
be used. In other cases, at greater depths or under circumstances
where conventional sampling techniques and laboratory testing are
not feasible or do not provide an adequate evaluation of the
physical properties of the materials being tested, seismic methods
offer the engineer a viable tool for evaluating engineering
materials.

The emphasis in this research is placed on developing
analytical formulations with which synthetic seismic records can be
generated. These synthetic records are then processed following
standard field procedures used in engineering applications. The
applicability and limitations of the uses and processing of seismic
records are studied. The thrust of this work is placed on wave
velocity measurements (hence elastic stiffnesses), but attenuation
measurements (material damping) are also addressed.

1.1.1 Uses and benefits of seismic methods

As analytical techniques to analyze physical problems are
becoming more and more sophisticated, so are the laboratory testing
methods used to determine the properties of the materials involved
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in these problems. There are, however, several difficulties
inherent with laboratory testing of sampled materials that do not
exist with in situ methods. One of these difficulties is trying to
minimize the disturbance caused by sampling methods in testing
materials (especially in geotechnical materials). This
complication is almost completely avoided by most seismic field
methods since there is no need to obtain any physical samples.
Another shortcoming of laboratory techniques is caused by the
inability to simulate properly in situ stress conditions. With
field testing techniques, in situ stress conditions do not need to
be simulated since they are, in most cases, the stresses acting in
the materials at the time the tests are performed. A further
obstacle in laboratory testing occurs when one tries to obtain
representative samples of the zone of interest. Many times the
specimens tested are only characteristic of a small area within a
larger zone having some irregularities (1ike in most jointed rock
and in soils with primary and secondary structure). With most of
the seismic methods, however, the areas sampled by the propagating
waves are large enough so that the properties obtained are
representative of the zone of concern.

When compared with other in situ testing methods, such as the
standard penetration test and the cone penetration test {(in soils),
seismic methods have the advantages that: 1) they can be tailored
to sample small or large zones of materials; 2) they have a strong
theoretical basis (the theory of elasticity) and are not dependent
on empirical correlations; and 3) measured wave velocities are
independent of equipment used and do not need correction factors
1ike many of the other in situ testing methods.

The most important properties usually obtained from seismic

tests are the elastic shear modulus (G), which is obtained from the
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propagation velocity of shear waves, the constrained modulus (M),
which is obtained from the propagation velocity of longitudinal
waves, and Poisson's ratio (v) which can be calculated if shear and
longitudinal wave velocities are known. Other properties like mass
density (p), material damping (D), strain amplitudes and strain
rates can be inferred or estimated from the analysis of wave
propagation records. One of the main objectives of this study is
to understand better what and how variables affect wave velocities
calculated from various propagation measurements as outlined in
Section 1.3.

Elastic properties obtained from seismic methods are those
corresponding to very low-amplitude strains (strains less than
0.00l percent for most geotechnical materials). Elastic moduli at
these small strains are usually called initial tangent moduli.
Initial tangent moduli are used directly as the stiffness of
engineering materials in vibration problems where the amplitudes of
the vibrations are kept very small (as is the case of most problems
concerning vibrations of soils and foundations). For larger-
amplitude straining, initial tangent moduli represent key
parameters needed to fit nonlinear material models.

For anisotropic materials like soils, it is possible to
determine the small-strain elastic properties in different
directions by generating waves whose motions are polarized in
different planes. In fact, one of the possible future uses of
seismic methods in soils is to evaluate the state of stress from a
three-dimensional picture of the seismic wave velocities (Lee and
Stokoe, 1986).

In the same way that geophysicists are interested in
determining structural changes and discontinuities in subsurface
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materials, so are engineers interested in locating anomalies of
engineering materials. In this respect seismic methods can be used
to determine layering and properties of pavement systems; to detect
cracks and other anomalies like voids in structural members, rock
formations or pavement systems; to locate tunnels; in the integrity
testing of piles and piers and other structures where construction
specifications are difficult to check; and for many other purposes.

In Geotechnical Engineering, one of the major areas for the
use of seismic methods and the area of focus in this study, shear
and constrained moduli and their variation with strain are
essential in characterizing soil behavior under dynamic loadings
such as those created by earthquakes and blasting, in determining
dynamic stiffnesses of foundations for soil-structure interaction
analyses, and in evaluating the liquefaction susceptibility of
cohesionless soils by the strain approach. Seismic methods often
used to determine the variation of initial shear and constrained
moduli with depth include the crosshole, downhole, surface
refraction, surface reflection, steady-state Rayleigh-wave method
and the spectral-analysis-of-surface-waves (SASW) method. Of these
techniques the crosshole and the downhole methods (body wave
methods) are the most widely used methods today for engineering
applications and the ones that provide the most reliable results.
The SASW method, a variation of the steady-state Rayleigh-wave
method, is a promising new technique that has all of the advantages
of the steady-state method without having its disadvantages. The
surface refraction and surface reflection techniques are not
suitable for most engineering applications since one is not able to

obtain detailed moduli profiles with these methods.
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1.2 SEISMIC METHODS BASED ON BODY WAVES

g
Body wave methods are based on the fact that the velocity at :
which seismic waves travel through the interior of materials B!
depends on the elastic properties of the materials. Measurements
are made by generating a seismic disturbance at one point in the ;
medium and measuring the time required for the disturbance to i;
travel to one or more seismic receivers. If the distances :f
travelled by the measured waves are known, body wave velocities can -
be calculated by dividing the distances by the corresponding travel ff
times. 0
™
4
From the theory of plane wave propagation in a homogeneous
.
isotropic elastic body, it can be shown that two types of body -
waves propagate. The first type, usually called the 3
compressional-, primary- or P-wave, propagates at a velocity Cp (or P,
Vp3 both notations are used in this study) which is given by =
3]
cpl = M/p (1.1a) p
or ]
g
5 -
cp = ()\ + ZG)/p (l.lb) ';:
f
or )
o,
2 E(1 - v) :
p p(l + v)(1 - 2v) (1.1c)
-
where, :;
A%
X
.'\
@
U SR "(f-.‘_-"_."'. - 4".-\ -7 OSIARSA .-r f.‘w\r\ﬂ-.r.-.f.-'.:’.:_. ARG LTt er e
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7
M is constrained modulus of elasticity,
p is mass density,
A is Lame's constant of elasticity,
G is shear modulus of elasticity,
E is Young's modulus of elasticity, and
v is Poisson's ratio.
The second kind of body wave is called the shear-,
transverse-, secondary- or S-wave and propagates at a velocity cg
(or vg) given by
cs® = G/p (1.2)

For plane wave propagation, P-waves are characterized by
particle motion along the line of the wave advance, while S-waves
are distinguished by having particle motion perpendicular to the
direction of wave propagation. A look at Eqs. 1.1 and 1.2 shows
that, in the same material, P-waves propagate at a much faster
speed than S-waves, with the difference in velocities depending on
the value of Poisson's ratio.

The most common methods to determine wave propagation
velocities in the field for engineering applications are the
crosshole and downhole (or uphole) methods. In the crosshole
method, the time required for body waves to travel horizontally
between several points located at the same depth is measured. By
repeating the process at different depths, a profile of shear and
compressional wave velocities with depth can be obtained. 1In the
downhole method, a seismic disturbance is generated at a point on
the surface, and the waves are monitored at several points in the
interior of the soil mass. By measuring the travel times, wave

s
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8 N
velocities can be calculated after travel distances have been
determined. ;
"
Elements required in downhole and crosshole seismic surveys N
are boreholes, sources, receivers and recording and triggering by
systems. Typical field procedures are shown schematically in t
Figs. 1.1 and 1.2. A detailed analysis of the field processes and )
data analysis can be obtained in Woods (1978), Stokoe and Hoar :
(1978), Corps of Engineers EM 1110-1-1802 (1979), Patel (1981) and >
Hoar (1982). Z
A
1.3 ORGANIZATION AND OBJECTIVES OF THIS REPORT 3
1f increasingly broader and more accurate conclusions and i
information are to be drawn from seismic records, it is essential Y
to understand better the wave propagation signatures and the -
methods to analyze these signatures. Geophysical applications ;;
usually involve analysis of seismic waves that are recorded at far ﬁ?
distances from the source. At these long distances, body waves are }'
usually considered plane waves (plane fronts). The fact that these R
waves were generated by a point source and therefore are Sf
propagating with a spherical wave front is usually neglected :;
without incurring serious errors. For engineering applications, .
however, seismic waves are recorded at short aistances from the o
source and should not be considered plane if a precise evaluation :f
of elastic velocities is necessary. An analytical formulation to \
generate wave propagation records produced by a point source in a N
full space (and therefore spreading in a spherical pattern) is DN,
explained in Chapter Two. It is not intended in this chapter to ; ED
give a general overview of the theory of wave propagation in a f:
linearly elastic, homogeneous and isotropic body. However, by . '.
w
)
\.'_
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making use of the Green's functions formulation of displacements
produced by a point load in the interior of a full-space (for which
case closed-form solutions exist), a set of synthetic wave
propagation records is generated. Typical features of these
synthetic records are studied in Chapter Three.

It is also necessary to develop new methods of analysis of
the field data that make better use of all the information
contained in the wave propagation records of body waves. In this
respect, Chapter Four is devoted to the analysis of existing and
new techniques to evaluate propagation velocities from which the
elastic properties of the propagating medium can be determined.
The subjective nature of visual identifications of times of
arrivals is demonstrated, especially for wave propagation in a
medium with material damping. The cross-correlation function is
shown to be an excellent method for determining elastic constants.
Finally spectral analysis techniques based in cross spectrum and
transfer functions are shown to be excellent tools to determine
elastic wave propagation velocities if properly applied. Care must
be taken not to use in the near field.

A technique to estimate material damping is presented in
Chapter Five. The technique is based in spectral analysis methods
and although is at a preliminary phase of development seems to hold
promise in the field determination of material damping.

A summary of this work, conclusions and recommendations are
then presented in Chapter Six.
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CHAPTER TWO

ANALYTICAL FORMULATION FOR BODY
WAVES IN A FULL SPACE

2.1 INTRODUCTION

In the crosshole and downhole seismic methods, body waves
(longitudinal and shear waves) are generated by a source at one
point and monitored at one or more other points as the waves pass
these points. Direct as well as reflected and refracted waves are
recorded by the receivers. It is assumed, however, in most of the
analyses performed of the wave propagation records that only direct
waves arrive at the receivers or that the effect of the reflected
and refracted waves is negligible (compared to the effect of the
direct waves). It can be assumed under these conditions that the
waves behave as propagating in a full space. Although the validity
of this assumption is questionable, it is intended (as a first step
in the process of understanding the behavior of the waves generated
by seismic sources) to analyze wave propagation records produced by
point and line loads in the interior of a three-dimensional space.
The mathematical formulation that leads to the analytical
generation of wave propagation records in a full space is explained

in this chapter.
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2.2 THEORETICAL BACKGROUND

One of several methods to study wave propagation phenomena in
a linearly elastic medium is by superposition of the response to
steady-state (or harmonic) excitations. The method, known as
Fourier superposition, Fourier synthesis or frequency domain
analysis, provides an easy way to study complicated transient
events when the solution to the steady-state problem is known.
Assume, for instance, that the solution to a harmonically vibrating
point load is known for all frequencies of vibration. Then, the
response of the medium to any transient point load excitation can
be calculated by expressing the load in terms of its harmonic
components, evaluating the response of the system to each
component, and superposing the harmonic solutions to obtain the
final results. If the solution to the point load is known, the
solution to loads over any area can also be obtained by integrating
the point load solutions over the area.

Superposition techniques are 1imited to linear systems.
Internal dissipation of energy in a truly nonlinear system is
simulated in a linear system by assuming a complex stiffness, G*,
of the form G* = G(1 + 2iD) in which G is the elastic shear modulus
of the material, i = /-1, and D is the hysteretic damping ratio.

In the following, the asterisk will be dropped from G~ for

simplicity, and G will be used as a complex number when the
material exhibits a hysteretic type of damping. The notation will
be clarified at each point in the text when confusion might arise.

A hysteretic type of damping is considered, in a frequency
domain analysis, to be frequency and strain independent. While the
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first assumption is usually true for most geotechnical materials in
the frequency ranges of interest herein (1 to looo Hz), the second
assumption is not. It has been experimentally observed that the
energy dissipated per vibration cycle can generally be considered
independent of frequency but depends on the amplitude of the
vibration. For low-strain amplitudes such as those associated with
seismic waves, however, damping can be considered to be independent
of strain (Johnston et al, 1979; Toksdz et al, 1979). The Fourier
superposition technique is, thus, an approximate method to study
waves propagating through a dissipative medium. Even for a
material with true strain and frequency independent hysteretic
damping, the solution would be approximate due to some mathematical
problems created by the fact that hysteretic damping does not
satisfy the principle of causality. The method offers, however, a

very good approximation, particularly for materials with low
damping.

Assume that the response of a medium to an excitation of the
form p(t) is desired. As a first step in the Fourier superposition
method, the function p(t) is decomposed in its different frequency
components by means of a Fourier transform, P(w), as

~jwt
P(w) = r p(t)e dt (2.1)
-
where
‘AY
1 jwt
D(t) = Z—ﬂr P(w) . e dw (22) —\..
-c o
o
and 5
<
t is the time variable in seconds, \;
.
*
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w is frequency in rad/sec,

e is the base of the natural logarithmics,
i =/-1, and

n = 3.14159...

The two integrals in Egqs. 2.1 and 2.2 are known as a Fourier
transform pair. P(w) represents the harmonic components of the
loading function p(t).

The response of the medium to an excitation of the form eiuwt
is defined by the Green's function or fundamental solution. The
fundamental solution gives the displacement at one point of the
medium due to a unit harmonic force applied at any other point of
the medium. If the Green's function of the problem under
consideration, H(w), is known and the superposition principle is

applied, the response of the system, u(t), to the loading function,

p(t), defined in Eq. 2.2 is then given by

u(t) = ;—“r P(w) + Hlw) - ¢ “tdu (2.3)

This means that the response of the system to any excitation
is given by the inverse Fourier transform of the product of the
fundamental solution by the Fourier transform of the excitation.

In other words, the Fourier transform of the response, U(w), is the

product of the Fourier transform of the excitation and the Green's
function and can be written as

U(w) = P(w) « H(w) (2.4)

Forward and inverse Fourier transforms can be efficiently
calculated in a digital computer by means of a Fast Fourier
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Transform (FFT) algorithm. Details on Fourier Transform theory and
FFT algorithms are explained in references such as Bracewell, R.N.,
1965; Brigham, E.0., 1974; and Newland, D.E., 1975.

Two- and three-dimensional wave propagation in a homogeneous,
isotropic, linearly elastic medium with or without linear
hysteretic damping is considered in this and the following two
chapters. Fundamental solutions for two-dimensional plane strain
(in-plane) and out-of-plane (antiplane) elastodynamic motion as
well as three-dimensional elastodynamic motion are presented in the
following sections.

2.2.1 Two-dimensional antiplane motion

Antiplane shear motion is illustrated in Fig. 2.la. This
type of transverse motion (SH-motion) is characterized by particle
movement perpendicular to the plane of propagation of the wave.
The displacement caused by a unit concentrated harmonic force at a
distance r is (Achenbach, 1973)

w(w) =5%r%2N%§) (2.5)
where

w is the value of the displacement,

w is the circular frequency of the vibration,

G is the complex shear modulus,

r is the distance from the source to the target point,

Cg = vG/p, is the shear wave velocity of the material

(complex value),
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b. In-plane motion

Fig. 2.1 - Particle motion for antiplane and inplane
loading.
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p is the density of the material, and
Ho(z) is the zero order Hankel function of the second kind. :2i
Ry
It should be noticed that the displacement, w, is a complex ~
]
value. Since this displacement is the response of the medium to a
g
steady-state excitation, the magnitude of the complex number ;:
represents the amplitude of the steady-state displacement, and the ﬁz
phase gives the phase difference between the excitation and the 7
s
response. .
IN.
.-\'
,\
I.“
2
| 2.2.2 Two-dimensional in-plane motions W
‘ ,
| ¥
‘ In-plane excitation leads to two kinds of motions, a :ﬁ:
longitudinal motion and a transverse or shear motion. The Zﬁ:
longitudinal motion (P-motion) is characterized by particle !";
i displacement in the direction of propagation of the wave. In the o
shear motion (SV-motion), particle movement is perpendicular to the S
direction of wave propagation (Fig. 2.1b). These motions cause a .
compression (or extension) and a shear distortion, respectively. "
The displacement in the direction of the load at a point oy
(SR,
along the line of excitation (P-motion) caused by a unit }i‘
concentrated harmonic force at a distance r is (Cruse and Rizzo, ;%Z
1968) .
N
NG
2 ":'
u(w) = [1/(2mecg )] [w-x] (2.6) e
where, :
u is the value of the displacement, s
p is the density of the material, and ,S
- v and x are given by the formulas: O
X
I
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y = Ko(iao) + (1/130) [Kl(iao) = (cs/cp)Kl(ibo)] (2.7)
x = Ka(iag) = (cg/cp)? Kp(iby) (2.8)
where,
a, = wr/cg,
[}
by = wr/cp,
Cp = [(A+ZG)/p]1/2, is the compression wave velocity of the

material (complex value),

A is the compliex Lame's constant, and

Ko, K1 and Ky are the modified Bessel functions of the second
kind and orders zero, one and two, respectively.

The displacement in the direction of the load at a point on a
Tine perpendicular to the direction of excitation and passing by
\ the point of impact (SV-motion), caused by a unit concentrated
' harmonic force at a distance r is (Cruse and Rizzo, 1968)

v(w) = [1/(2mpcg™)] « ¥ (2.9)

where,
v is the value of the displacement, and
¢ is defined in Eq. 2.7.

2.2.3 Three-dimensional motions
The three-dimensional notation is illustrated in Fig. 2.2.

The fundamental solution for longitudinal motion (P-motion) is
defined by

u(w) = [1/(4mpcg I[r-z] (2.10)
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and the fundamental solution for shear motion (S-motion) is '..;
4

-3

v(w) = [1/(4mpcg™)] - T (2.11) =

2

where T and = are given by =
N

I = {[1%(1/iag) - (1/ag)°1/r} &7 % 2

. ¢

- (eg/cp)? {L(1/iby) = (1/b)21/r} & P (2.12) ¢

== {[1+3(1/iag) - 3(1/a)?Y/r} e 120 =

2 : 2 -ib A

- (cs/cp) {1 + 3(1/iby) -3(1/by)"1/r} e 0 (2.13) ..::

:

&

2.3 TIME AND FREQUENCY DOMAIN PARAMETERS 2y
32

The loading function considered in this study is one cycle of :

a sine wave of amplitude F and period Ty as illustrated in Fig. A
2.3. The amplitude F has a value of one unit and the duration of :-_r'_.
the impulse, T, is one second. The material considered as the «:.j\
medium of propagation has a shear wave velocity of 100 units and a __§
mass density of 3.1 units. Note that no specific units are needed il
(except for the time). If a specific set of units was to be used, :;
then all units would have to be compatible. For instance if forces }::'::
are expressed in 1bs, and the wave velocities in ft/sec, then the t“

mass density should be in 1b-sec2/ft4 and so on. If the density *
was set in kg/m3, then velocities should be in m/sec and forces in 3
Newtons. The results are presented in dimensionless form, in most '
of the cases. Therefore, the actual magnitude of the force used, ]
)
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the value of the shear wave velocity or the duration of the impulse
are irrelevant when presenting the results. e

The fast Fourier transform parameters used in this study are

a sampling rate, At = 0.01 sec, and a total number of sampling
points, N = 1024, (A few studies were done with, At = 0.05 sec and
N = 512, when the target point was far from the source). In
choosing these parameters, the following conditions were
considered:

a) The sampling time, at, should be small enough: 1. to
reproduce accurately the loading and response functions, and 2. to
allow a sufficiently high maximum frequency, f,,, to be obtained.

b) The total duration of the function to transform, Tp,
should be long enough: 1. to minimize the effects of the
periodicity inherent in the FFT algorithm, 2. to cover the time
range of interest, and 3. to produce a small frequency domain ;>-v o
sampling rate, Af. ‘

A singularity occurs in the fundamental solutions at zero
frequency (Egs. 2.5 through 2.13). In the present study, this
singularity was avoided using the fundamental solution at a
frequency equal to Af/10 as the solution for the static case.

The studies presented in this chapter and in the following

chapters have been conducted from records of particle displacement A

with time. Similar studies could have been performed from time ﬁt
histories of particle velocity or acceleration, but trends are 3:
easier to identify from waveforms of particle displacement than i?~
from records of particle velocity or acceleration. As an .Q:
illustration, displacement, velocity and acceleration re.ords for ) ;t
the five cases of motion considered in this report (two-dimensional o §$

P-, SV- and SH-motions and three-dimensional P- and S-motions) are .
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N
’ 1
. presented in Figs. 2.4 through 2.8. The notation used in these .
figures is the following: S$

- u is particle displacement, ;E
v is particie velocity, . ;

a is particle acceleration, .
G is shear modulus of the material (real value), Eﬁ&
F is amplitude of loading force, ;2’
Cg is shear wave velocity (real value), oy

t is time in seconds, 2

d is distance from the source to the target point, A

A =cg + Tg ("wavelength of loading function", not to be g&
confused with Lame's constant), 3.

D is damping ratio in percent, and

. v is Poisson's ratio. §I
) Velocity or acceleration records can be obtained from =

‘ velocity or acceleration fundamental solutions, or by =
differentiating the displacement records. Al1l velocity and ;‘
) acceleration records in this study were obtained by using fﬁ
fundamental solutions of velocity or acceleration. f:

it

It can be observed in Figs. 2.4 through 2.8 that the velocity &:

and acceleration waveforms are more complex than the displacement ;?
records. Even the simple case of the two-dimensional (2-D) ;‘
SH-motion in Fig. 2.6 seems easier to understand in terms of -1

displacement than in terms of velocity or acceleration. A further o

study of the displacement waveforms is done in the following ;i

chapters. -
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. 2.4 SUMMARY

- Analytical formulations to compute wave propagation records

NN

AN N A
™~

of displacement, velocity or acceleration generated by a point load
in the interior of two- or three-dimensional, isotropic, N
homogeneous, elastic full-spaces has been presented in this :
chapter. The formulations are based on Fourier synthesis of the o
Green's functions. The loading conditions and fast Fourier v
transform parameters used in the computations for the examples K
shown in the next two chapters are given in Section 2.3. ii
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CHAPTER THREE

CHARACTERISTICS OF BODY WAVE
SIGNATURES

3.1 INTRODUCTION

Evaluation of in situ soil properties and site
characterization from wave propagation records is gaining
acceptance in engineering practice. However, the level of use is
very superficial because the understanding of the wave record is
basically limited to "first-arrival" determinations. In some cases
estimation of the "apparent" wave arrival may even lead to
erroneous values of elastic moduli. A better understanding of the
waveforms, the effect of different parameters on the time of
arrival of the waves and a better use of all the information
provided by the wave record is necessary for a more efficient use
of seismic methods. A series of analytical studies on the time
histories of body wave signatures is presented in the following
sections.

3.2 ANALYSIS OF TIME RECORDS

Waveforms obtained in the time domain at a dimensionless
distance, d/x = 2 are presented in Figs. 3.1 through 3.10 for
different kinds of body wave motion (where d is the distance from
the point source to the receiver and X = ¢4 + Tg is the
"wavelength of the loading function"). A1l results are presented
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in dimensionless form. The wave amplitude is presented as a

dimensionless displacement uG/F for the two-dimensional cases
{(since the force F is per unit length), and as uiG/F for the three-
dimensional cases (point forces). The time is presented in
dimensionless form as cgt/d. In this way, the theoretical time of
arrival of the shear wave controlled by the elastic stiffness,

tg = d/cg, always corresponds to a value of one, and the
theoretical time of arrival of the longitudinal wave, tp = d/cp,
corresponds to

cs + tp/d = cg/cp = [(1-2v)/(2-2v)]1/2 (3.1)

which depends on the value of Poisson's ratio, v. For most figures
presented in this chapter, a value of 0.25 was used for Poisson's
ratio. This ratio results in a theoretical arrival time of the P-
wave of 0.577. Also, in these expressions and in all figures
presented in this and other chapters, G, cg and c, represent the
real values of the shear modulus, shear wave velocity and
compressional wave velocity, respectively.

3.2.1 Medium with no material damping

The waveforms presented in Fig. 3.1 correspond to two-
dimensional in-plane longitudinal motion. Consider the upper part
of the figure which corresponds te a wave travelling in a medium
with no material damping. The trace shown is composed of three
basic parts. The first part on the left of the trace represents a
quiet zone. This results from the fact that the impulse has been
applied at the excitation point, but no energy has yet arrived at
the target point. The second part, starting at the point indicated




3

3

o N
- A

2t A

_rmvkbv?
:ﬂﬁﬂfﬂﬂﬁ

0%

0=
d/» = 2,

0

4

i

PRI P &

2.0

1.0 1.5

c.t/d

0.

0°¢

0°0
- 01X
4/79n

0°¢-

0°y

Ta s, OPSTEEL
HGQOCX AL LR T A s

1.5

2.0

o
- e )
! o |7
a/m [=}
~N
wnae
n A
~N
09 lo
A A o
0°Y 0°¢ 0°0 oz~ 0°"
e- 01X
4790

e‘t/d

-

S e T S
.

- Two-dimensional in-plane longitudinal motion.
Effect of different damping ratios.

Fig. 3.1

z & PNl Y
PRI




36

by the solid arrow, includes a big excursion of the wave and lasts
until a second excursion arrives at a dimensionless time of one,
where the third part of the trace begins. The point where the wave
arrives corresponds to a dimensionless time cgt/d = 0.577. This
time coincides precisely with the time of arrival of a wave
traveling at the compressional wave velocity in a medium with
Poisson's ratio equal to 0.25 (as used in this case). The second
part of the wave (third part of the trace), starting at the point
denoted by the dashed arrow, arrives at a dimensionliess time equal
to one, meaning that it is traveling at the shear wave velocity.
Hence, the first part of the waveform is called the primary wave
(P-wave), because it arrives first, and is denoted by the symbol Lp
for reasons that will become obvious soon. The second part of the
waveform is called the secondary wave, because it arrives second,
and is denoted by Lgy. It should be noticed that even though the
second part of the wave is traveling at the shear wave velocity, it
does not represent a shear motion. This second part of the wave is
actually a longitudinal motion (compression and extension) since
the particle motion is in the direction of propagation of the wave.
This second part of the waveform is called the near-field wave (or
additional near-field wave) of the P-motion and is discussed in

later sections.

A second set of records, similar to those presented in
Fig. 3.1 for two-dimensional P-motion, is presented in Fig. 3.2 for
two-dimensional SV-motion. Consider again the wave propagating in
a medium with no material damping (upper trace). After a quiet
period, a perturbation arrives at the target point. This arrival,
indicated in the figure by the dotted arrow, comes at a time
corresponding to the compressional wave velocity (cgt/d = 0.577).
The second and main part of the wave arrives at a dimensionless
time equal to one {corresponding to the shear wave velocity).
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Again, the first wave arrival (between the two arrows) is called
the P-wave, because it arrives first (primary), but is denoted by
Tp, because it represents a transverse or shear motion. The second
part (starting at the point indicated by the solid arrow) is called
the S-wave (or SV-wave) and is denoted by Tgy. The P-wave
(additional near-field in this case) represents that part of the
energy transmitted at the compressional wave velocity, and the
S-wave represents that part of the energy transmitted at the shear
wave velocity (although in both cases the motion is in the same
direction). Note that, in general, when P-motion (longitudinal
motion) is being measured, as in the case in Fig. 3.1, most of the
energy is carried by the P-wave, Lp, (indicated by the large
amplitude excursion of this wave). On the other hand, when shear
motion is being monitored, the bulk of the energy is transmitted by
the shear wave, Tgy (Fig. 3.2). This is true at distances that are
far from the source (which d/x = 2 corresponds to). When the
receiver is located near the source, the additional near-field wave
may carry as much energy as the other wave. Records of waveforms
monitored at other distances are presented in Figs. A.l through
A.4. Notice that, in these figures, the wavelength is constant
from one graph to the next. Because the horizontal axis is
normalized with respect to the distance from the source to the
receiver and this distance varies from one graph to the other, the
horizontal scale is changing giving the impression that the
wavelength is varying.

Two-dimensional SH-motion at a point located at a distance
d/x = 2 from the source is shown in Fig. 3.3. This kind of motion
is characterized by a pure shear wave. A1l energy is transmitted
at the shear wave velocity as can be observed in the upper trace of
Fig. 3.3. SH-motion will help clarify certain topics in the
following sections. But for the moment, notice that there is no
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4 P-wave energy coupled with the SH-motion. Additional antiplane
motion (SH-motion) records of wave propagation in a medium with no
¢ material damping are included in Figs. A.5 and A.6.

Three-dimensional motion is presented in Figs. 3.4 and 3.5.
The same conclusions drawn for the two~dimensional motions apply to
b+ the three-dimensional case. The secondary wave arriving at a
dimensionless time of one in Fig. 3.4 does not present a clear
arrival. This is due to the coupling of the primary and secondary
waves which distorts the shape of the waves. Actually the sharp
angle in Fig. 3.4 is caused by the P-wave energy terminating at
that point and not to the arrival of the S-wave energy. 1t should
) also be noticed that, in the three-dimensional case, there is no

s a a .o &

.

5 pure S-wave. This occurs because of the inherent coupling between
P- and S-waves generated by the point source. Records of waveforms
monitored at other distances are presented in Appendix A (Figs. A.7

- through A.10). A look at these records further clarifies the
topic.

A first conclusion can be reached at this point. If
Y compression wave velocity is to be determined from wave propagation
. records, it is easier and more accurate to measure the time of
arrival from records of P-motion than from records of S-motion.
Similar conclusions can be made with respect to shear wave

velocity. In terms of practical application, this conclusion means
that three-dimensional sensors oriented along the directions of
particle motions must be used in seismic testing to obtain the most
precision.
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) 3.2.2 Medium with material damping S
A
.
Records of wave propagation in a medium with no material ﬂ:f
damping have been considered so far. In the lower traces of -
Figs. 3.1 through 3.5 and in Figs. A.1l through A.20, synthetic ;ﬁ?
records of waves propagating in a medium with five percent material {j;
damping are presented. It can be observed in these figures that S;
the general shape of the waveforms remains the same as those for o2
waves propagating in a medium with no damping. Both primary and {Z
secondary waves are encountered in two-dimensional P- and ;;
SV-motions as well as in three-dimensional motions; and a pure Eﬁi
shear wave is encountered in only two-dimensional SH-motion. It is “
further observed that the amplitude of the waves has decreased i
compared to the amplitude of the waves in a material without
damping; but the most important fact is that the time of arrival is o
. no longer easy to identify. The arrival of the wave is not marked -
by a sudden change of slope, as in the case with no damping, but is ::E
represented by a smooth change. Z;i
| =3
It has been noted that for real materials, the time of r;j
arrival chosen depends many times on the amplification applied to }:
the time history record (Ricker, 1953; Hoar and Stokoe, 1978). The 2:
higher the amplification, the sooner the waves seem to arrive. The Eﬁk
synthetic records shown in Figs. 3.1 through 3.5 and A.11 through "
A.20 clearly exhibit this point. It is also observed in the h&’
synthetic records that the waves arrive earlier than the arrival T
times calculated from the theoretical velocities of propagation, cg 5;;
or ¢y {(cg and c, being the real values). The theoretical - e
propagation velocities (csD and ch) caused by the use of complex :ZE'
shear and compressional wave velocities (cs* = cg *+ icgy and :Ei
' cp* = ¢p + icpp) are ;;}
N
i
5
@
R R T A I NN R D e s
e Er S S e L R
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cp? = [ep? + (cp1)@l/ey (3.1)
and

cs® = [cg? + (cg1)?)/cs (3.2)
in which

Cpl and cgp are the imaginary parts of the complex
velocities, and
ch and csD are the damped propagation velocities.
The damped velocities, ch and csD, are practically identical
to cg and Cp> respectively (with differences smaller than 0.25
percent for values of the damping ratio smaller than five percent).
A discussion and derivation of the relationships between elastic
and damped body wave velocities and moduli is presented in Appendix
B.

The theoretical times of arrival (t = d/cg, or t = d/cp) are
marked with arrows in Figs. 3.1 through 3.5. Times obtained from
the first arrival of the wave will lead to estimates of the shear
or compression wave velocities of the medium which are slightly too
high. This "sooner" arrival of the waves is a problem encountered
in the field and should always be kept in mind when analyzing real
time records. Other approaches that eliminate the uncertainty in
the arrival-time estimation are presented in the next chapter.

3.2.3 Effect of Poisson's ratio

Finally the effect of Poisson's ratio, v, is studied in
Figs. 3.6 through 3.10. In the upper part of these figures are the
records of waves propagating in a medium with a lTow Poisson's ratio
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(v = POI = 0.25) and in the lower part are corresponding waves in a
medium with a higher Poisson's ratio (v = POI = 0.4). A1l the

. el

results are for a material with no damping. “
"

)

The first observation that can be made is that Poisson's g$
ratio does not affect the secondary wave characteristics. -{
Y

Secondly, the P-wave velocity increases as v increases. According

to Eq. 3.1 the dimensionless time of arrival for a Poisson's ratio
of 0.4 should be 0.408 as is the case. Finally it can be observed sf
that, due to the higher stiffness, the amplitude of the P-waves N

decrease with increasing Poisson's ratio. A complete set of ~
records at other distances from the source is given in Appendix A. :
£
2y
3.3 NEAR-FIELD EFFECTS Eiﬂ
It was indicated in the previous section that, in all the 'qf
motion records except for those of two-dimensional SH-motion, two . ﬁﬂi
types of waves appeared in the waveform, one travelling at the '
longitudinal wave velocity (P-wave) and the other travelling at the .
shear wave velocity (S-wave). If one inspects the time history Eé‘
records of longitudinal motion at different distances from the -
source (presented in Appendix A), it can be observed that the ‘\3

amplitude of the secondary wave (Lgy) in these P-motion records is

attenuating at a much faster rate than the main event (the P-wave).
At a certain distance from the source, the amplitude of the S-wave
(Lgy-wave) becomes insignificant compared with the amplitude of the
P-wave (Lp-wave). Therefore, the S-wave (Lgy-wave) in a pure
longitudinal-motion (P-motion) record (no shear motion) only
"exists" at distances that are close to the source and is commonly
referred to as the additional near-field wave or near-field wave
(Aki and Richards, 1980; White, 1983).
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Similarly, in a shear motion (transverse motion) record,
there are two events present: one travelling at the compressional
wave velocity (a P-wave, Tp) and a second travelling at the shear
wave velocity (Tgy). The first event (Tp) is, in this case, the
one that decays at a faster rate and represents the additional
near-field effect.

To illustrate this point, consider the case of three-
dimensional shear-motion in Egs. 2.11 and 2.12. The first
exponential in Eq. 2.12 represents a wave that is propagating at
the shear wave velocity, cq, (e'iao . elut = ei“[(r/cs)'t]), while
the second exponential is a wave propagating at the compressional
wave velocity, Cp- The amplitude of the wave travelling at the
shear wave velocity is composed of terms that vary with 1/r, 1/r2
and 1/r3, whereas the amplitude of the wave propagating at the
compressional wave velocity has terms varying at 1/r2 and 1/r3.
Therefore, at large distances from the source (large r's), the
controlling term is that attenuating at a rate 1/r. This term is
usually called the far-field term, since it is the only one
existing at far distances from the point of excitation. The other
terms, those propagating at the shear and compression wave
velocities are called the additional near-field terms (or near-
field terms). Notice that the wave travelling at the shear wave
velocity also has near-field terms. However, since these
components are travelling with the far-field component, they are
undistinguishable in the wave record, and the term near-field is
usually applied only to the components of the P-wave. An analogous
reasoning can be made for the three-dimensional longitudinal-motion
and for the two-dimensional motions. Further illustrations are

given in Section 3.5.
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In summary, when monitoring a pure longitudinal-motion (P-
motion), the P-wave represents the main event called the far-field
effect, and the S-wave represents the near-field effect. When
exciting a pure shear motion (S-motion), the S-wave is the main
event (far-field effect) and the P-wave is composed only of near-
field terms.

3.4 POLARITY REVERSALS UPON REVERSING THE IMPULSE

It should be noted that when the direction of the impulse is
reversed, both near- and far-field terms change polarity. However,
when measuring transverse motion in crosshole and downhole tests,
it is frequently found that S-waves change polarity but P-waves
keep the same polarity when the direction of the impulse is
reversed. To explain this behavior, several conditions should be
considered. First, to generate a shear motion (transverse motion)
with a crosshole source, a vertical impulse is applied to the
source. Since the source is of finite length and is usually wedged
in a borehole when the vertical impulse is applied, a longitudinal
motion is generated along with the shear motion. Second, when
reversing the direction of the vertical impulse, the direction of
the transverse motion is reversed, but the direction of the
longitudinal motion remains the same.

For the conditions cited above, a receiver will only monitor
the transverse motion and will not record any of the longitudinal
motion if the receiver used to record the transverse motion is
placed in a perfect vertical position (perpendicular to the
direction of propagation) . Under these conditions, the P-wave
recorded at the vertical receiver will be exclusively produced by
near-field terms of the transverse motion. Therefore, when the
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direction of the impulse is reversed, both P- and S-waves should
reverse polarity. However, when placing “vertical" receivers in
the field, the receivers are very seldom in a perfect vertical
position, and they are most commonly imperfect receivers. (They
exhibit some cross-sensitivity.) The small inclination of the
receiver and/or the small cross-sensitivity present in receivers
will allow the recording of a small component of the longitudinal
motion. The waveform record will then be composed of both S- and
P-motions with their corresponding near- and far-field terms. When
the direction of the impulse is reversed, the transverse motion
reverses but not the longitudinal motion. Therefore, unless the
near-field wave associated with the transverse motion recorded is
larger than the far-field component of the part of the longitudinal
motion recorded by the receiver, the polarity of the P-wave will
not change.

To illustrate this point, longitudinal- and transverse-motion
records produced by horizontal and vertical point loads applied at
a distance of two wavelengths from the source are presented in
Fig. 3.11 as recorded by a perfect vertical receiver (zero cross-
sensitivity and perfect vertical orientation, ¢ = 0 degrees). Time
histories of forward and reversed vertical impulses as monitored by
the perfect vertical receiver are shown in Fig. 3.12. It can be
observed that the P-wave is exclusively composed of the near-field
effect in the transverse-motion record and that both traces are
opposite (reversed) but otherwise identical. The case of a
receiver which is inclined 30 degrees (¢ = 30 degrees, mo®
illustration purposes in which part of the inclination could
correspond to cross-sensitivity effects) with the vertical is
considered in Fig. 3.13. The lower trace in this figure is
composed of seven-tenths of the shear motion produced by the direct
impulse and by half of the longitudinal motion. In the upper
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trace, that corresponds to the reverse impulse, the shear motion ﬁQ
has reversed but the longitudinal motion has remained with the same ?
sign. Since one half of the P-motion carried more P-wave energy o
than seven-tenths of the S-motion record, the combined waveform
resulted in initial P-waves that did not reverse polarity when the N
LS,
direction of the impulse was reversed. hQ

Ly

A similar line of reasoning can be used when the source and

receiver are not at the same depth for a crosshole test, or for Eﬁ

other cases in a downhole test. Rﬁ

i 3.5 WAVE AMPLITUDE DECAY T::
: 3
4 The amplitudes of seismic waves decrease as the waves hi
. propagate through a medium. This decay of wave amplitude is caused o
, by two mechanisms: 1) spreading of wave energy from a source, if
E. generally called geometrical or radiational damping, and 2) ff
[ dissipation of elastic energy due to primarily frictional losses in ;fﬁ
| the material itself, commonly known as attenuation, material or '<
} internal damping. ;:
¢ i
b Y
: Records of displacement with time at different distances from :*

the source are presented in dimensionless form in Appendix A. The K .

records are for two- and three-dimensional wave propagation in :;

media with material damping of 0 or 5 percent and Poisson's ratio é%

of 0.25 or 0.4. The input to the medium is one cycle of a sine

y

wave, as described in Section 2.3, and the parameters used in these

A\.‘ .
* o«

figures are the same as those described in Section 3.2.

a_ e &
s\'\ \.‘l

.'.,
»
L)

Two-dimensional motion in a medium with no damping and
Poisson's ratio of 0.25 is shown in Figs. A.l through A.6. It can
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N
be observed that for motions in which the primary and secondary . w
waves are coupled, the coupling occurs mainly at short distances bf
from the source (d/x < 2). At larger distances, the P-wave has . :&-
separated from the S-wave, and the two waves can be cleariy %;
distinguished from each other. The minor wave (S-wave in the case &
of P-motion and P-wave in the case of SV-motion) attenuates at a :;
faster rate than the major wave. These minor waves, the additional EZ‘

N

near-field waves, only exist at short distances from the source.
It should be noticed, however, that at short distances the energy -

carried by the near-field terms can be a substantial amount of the :l
h

total energy in the waveform. Wave amplitude decay in these :;,
figures is due exclusively to radiation damping, since material :;‘
damping, D, is zero. R
N

\-::'v

A similar situation arises for motions in a three-dimensional f&;

full-space (Figs. A.7 through A.10). However, the amplitude of the e
waves decreases much faster than in the two-dimensional cases.

This faster decay is due to the spreading of the energy from a EE;
point source in a spherical pattern while in the two-dimensional 'i:;
case the energy spreads in a cylindrical pattern from a line ::f
source. =~
»f:.;-

i

Motion in a medium with five percent material damping is ;E:
presented in Figs. A.ll through A.20. The behavior is similar to ah
that in the medium with no material damping but amplitudes are NG
decreasing with distance at a faster rate due to the energy lost in E\E
each cycle because of internal friction. e
M

Finally a set of records corresponding to propagation in a .1:
medium with no damping and a Poisson's ratio of 0.4 is presented in -ii&
Figs. A.21 through A.28. The behavior is similar to that described §£§
when Poisson's ratio was 0.25. The amplitude of the P-wave Lo
2
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component of the motion is, however, smaller when Poisson's ratio
is 0.4. No records are included for SH-motion since they are the
same as those when Poisson's ratio is 0.25.

To study the attenuation behavior of body wave amplitude with
distance due to radiation damping, the variation of wave amplitude
with distance for steady-state motion has been plotted in
Figs. 3.14 through 3.18. In these figures the displacement
amplitude is normalized as uG/F for two-dimensional motions and as
uArG/F for three-dimensional motions<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>